The Influence of He$^+$ Ion Bombardment on Magnetic Properties of NiFe/Au/Co/Au Multilayers

P. Kuświka, B. Szymańskia, M. Urbaniaika, F. Stobieckia, I. Sveklob
J. Kisielewskib, A. Maziewskib and J. Jagielskic,d

aInstitute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
bInstitute of Experimental Physics, University of Białystok, Lipowa 41, 15-424 Białystok, Poland
cInstitute of Electronic Materials Technology, Wólczyńska 133, 01-919 Warszawa, Poland
dThe Andrzej Soltan Institute for Nuclear Studies 05-400 Świerk/Otwock, Poland

The influence of helium ion bombardment on magnetoresistance (MR), magnetization reversal and domain structure of sputtered \(\text{Ni}_{20}\text{Fe}_{80}-2\text{nm}/\text{Au}-2\text{nm}/\text{Co-0.6nm}/\text{Au-2nm} \) \(\times \) 10 multilayers (MLs) was investigated. The MLs consist of ferromagnetic layers with alternating in-plane (NiFe) and out-of-plane (Co) magnetic anisotropy. The samples were bombarded by He$^+$ (30 keV) ions with fluences varied in the range \(10^{13} \leq D \leq 3 \times 10^{16} \) He$^+$/cm2. With increasing fluences of helium ions the following changes in magnetic properties were observed: (i) the saturation field of Co layers exponentially decays what is caused by a transition from the out-of-plane to the in-plane anisotropy of Co layers, (ii) the MR decreases progressively whereas the resistance remains almost constant (up to \(4 \times 10^{15} \) He$^+$/cm2), only for higher fluences it strongly increases, (iii) the period of maze stripe domain linearly decreases with \(\log(D) \). However, domain structure for \(D=3 \times 10^{16} \) He$^+$/cm2 is hardly visible.

Subject category:
5. Nano-structure, Surfaces, and Interfaces

Presentation mode:
poster

Corresponding author:
P. Kuświk

Address for correspondence:
ul. Mariana Smoluchowskiego 17, 60-179 Poznań, Poland

Email address:
kuswik@ifmpan.poznan.pl