Ferromagnetic perovskite cobaltites La$_{1-x}$M$_x$CoO$_3$ (M = Ca, Sr, Ba) have unusual magnetic and transport properties due to the unique feature of the Co ion to change its spin-state. Their large sensitivity to the external pressure is caused by the strong dependence of the crystal-field splitting energy Δ_{cf} on variation in the Co-O bond length d_{Co-O}. They demonstrate a complex dependence of pressure coefficient dT_C/dP both on doping level and on size of dopant ion. An essentially positive dT_C/dP coefficient found for Ba compound is in strong contrast to that one found for Ca and Sr cobaltites, where the dT_C/dP changes sign from negative to positive with increasing doping. We demonstrate that the sign reversal of dT_C/dP can be caused by the hole-doping and also, independently, by the lattice expansion only, realized by increasing size of dopant ion at constant hole-doping level. It is shown also that the complex pressure effect on ferromagnetic transition T_C in cobaltites can be successfully described in terms of the competing e_g-electron bandwidth W and crystal-field splitting energy Δ_{cf}, taking into account the pressure dependent steric factors.

Subject category:
1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode:
oral - presented by A. Wisniewski

Corresponding author:
A. Wisniewski

Address for correspondence:
Institute of Physics, Polish Academy of Sciences
Al. Lotnikow 32/46
PL 02-668 Warsaw, Poland

Email address:
wisni@ifpan.edu.pl