HIGH-FIELD MAGNETIC BEHAVIOR AND ELECTRONIC STRUCTURE OF MELT-SPUN YCo2-BASED SYSTEMS

B. Mielniczuka, Z. Śniadeckia, A. Szajeka,
U.K. Rößlerb, E. Kampertc, B. Idzikowskia

aInstitute of Molecular Physics, PAS, M. Smoluchowskiego 17, 60-179 Poznań, Poland
bIFW Dresden, P.O. Box 270116, D-01171 Dresden, Germany
cDresden High Magnetic Field Laboratory (HLD), Helmholtz-Zentrum Dresden Rossendorf, D-01328 Dresden, Germany

The high-field magnetic properties of structurally metastable intermetallic compounds (nanocomposites), melt-spun YCo\textsubscript{2}, Y\textsubscript{0.9}Nb\textsubscript{0.1}Co\textsubscript{2} and Y\textsubscript{0.9}Ti\textsubscript{0.1}Co\textsubscript{2} have been investigated. Physical properties are reported from x-ray diffraction (XRD), vibrating sample magnetometry (VSM) and pulsed magnetic field measurements. The electronic structure was determined based on full potential density-functional calculations. The samples consist of single, MgCu\textsubscript{2}-type phase, with changing lattice constants and mean grain size from 25 to 50 nm. The magnetic properties of examined compounds are similar to polycrystalline YCo\textsubscript{2}, but the increase of magnetization at lower temperatures and hysteresis loops on M(H) curve shows a ferromagnetic ordering with small coercive fields. The bending of M(H) curve in field of more than 30 T may indicate the onset of a metamagnetic transition to a field-induced high-spin state. By adding Ti or Nb, the magnetization in low magnetic field increases and superposition of two hysteresis loops can be seen at low temperatures. For Y\textsubscript{0.9}Ti\textsubscript{0.1}Co\textsubscript{2} the calculated value of magnetic moment on Co is 1.1 μ_B/atom, and -0.9 μ_B/atom is induced on Ti atoms, with total magnetic moment value of 1.85 μ_B/f.u. Structural and chemical modifications affect the properties of YCo\textsubscript{2} alloy significantly.