ANISOTROPY AND QUASI–2D BEHAVIOR OF MAGNETOELECTRIC LiCoPO$_4$ COMPOUND

J. Wieckowskia, M. U.Gutowskaa, A. Szewczyka, A. Wisniewskia, R. Puzniaka, R. Diduszkoa, Yu. Kharchenkob, M. F. Kharchenkob, and H. Schmidc

aInstitute of Physics, Polish Academy of Sciences, Al. Lotnikow 32/46, 02-668 Warsaw, Poland
bB. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, pr. Lenina 47, 61103 Kharkiv, Ukraine
cDepartment of Inorganic, Analytical and Applied Chemistry, University of Geneva, 30 quai Ernest-Ansermet, 1211 Geneva 4, Switzerland

The LiCoPO$_4$ olivine exhibits a unique set of physical properties, e.g., strong linear magnetoelectric effect, large uniaxial magnetic anisotropy, quasi–2D magnetic structure, and a large Li-ionic conductivity, which makes it attractive for basic and applied studies. Specific heat, magnetic torque, and magnetization of LiCoPO$_4$ olivine were measured. It was shown that near the Néel temperature, $T_N = 21.6$ K, magnetic contribution to the specific heat can be described satisfactorily by logarithmic divergence, as expected for a quasi–2D antiferromagnetic Ising system. An effect of influence of magnetic field on the magnetocrystalline anisotropy was discovered. It manifests itself as a first-order transition induced by magnetic field of 8 T at ~ 9 K. Physical nature of this transition was explained and a model describing experimental dependences satisfactorily was proposed.

Subject category:
1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode:
poster

Corresponding author:
Jaroslaw Wieckowski

Address for correspondence:
Institute of Physics Polish Academy of Sciences
Al. Lotnikow 32/46 02-668 Warsaw, Poland

Email address:
wieckow@ifpan.edu.pl