\(\mu \)SR investigation of ferromagnetic CeIn\(_2\)

C. Rusu\(^a\), D. Andreica\(^a\), R. Dudric\(^a\), R. Tetean\(^a\), D. P. Rojas\(^b\), J. Rodriguez Fernandez\(^c\), J. C. Gomez Sal\(^c\), A. Amato\(^d\)

\(^a\)Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania
\(^b\)Departamento de Fisica, Universidad Carlos III de Madrid, 28911 Leganes, Spain.
\(^c\)DCITIMAC, Facultad de Ciencias, Universidad de Cantabria, 39005 Santander, Spain.
\(^d\)Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, 5232 Villigen-PSI, Switzerland

CeIn\(_2\) is a pure ferromagnet below 22 K one of the highest ordering temperatures in ferromagnetic Kondo lattices. Macroscopic measurements [D. P. Rojas et al., Physical Review B 80 (2009) 184413] suggested that the magnetic transition in CeIn\(_2\) is of first order.

We report the results of our \(\mu \)SR experiments on CeIn\(_2\), performed at ambient pressure and under applied pressure. From the temperature dependence of the internal field at the muon site we confirm that the transition at 22 K is of first order. Our results also suggest the existence of a precursor magnetic phase above the first order ferromagnetic transition. Both the ferromagnetic transition temperature and the local field at the muon site (measured at 2 K) are increased by the external applied pressure. However, the shape of the temperature dependence of the local field at the muon site is drastically influenced by the increase of the pressure.

The results of our \(\mu \)SR experiments performed at temperatures above the magnetic ordering temperature, in zero and longitudinal magnetic field configurations, are also discussed.

Subject category: 1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode: poster

Corresponding author: C. Rusu

Address for correspondence: Faculty of Physics, Babes-Bolyai University, 400084 Cluj-Napoca, Romania

Email address: calin.rusu@phys.ubbcluj.ro