Stability of Superfluid Phases in the 2D Spin-Polarized Attractive Hubbard Model

A. Kujawa-Cichy and R. Micnas

"Solid State Theory Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland

We study the evolution from the weak coupling (BCS-like limit) to the strong coupling limit of tightly bound local pairs (LP’s) with increasing attraction, in the presence of the Zeeman magnetic field \(h \) for \(d = 2 \), within the spin-polarized attractive Hubbard model. The broken symmetry Hartree approximation and strong coupling expansion are used. We also apply the Kosterlitz-Thouless (KT) scenario to determine the phase coherence temperatures. For spin independent hopping integrals \((t^\uparrow = t^\downarrow) \), we find no stable homogeneous polarized superfluid (SC\(_M\)) state in the ground state for the strong attraction and obtain that for a two-component Fermi system on a 2D lattice with population imbalance, phase separation is favored for a fixed particle concentration, even on the LP (BEC) side. We also examine the influence of spin dependent hopping integrals (mass imbalance) on the stability of the SC\(_M\) phase. We find a topological quantum phase transition (Lifshitz type) from the unpolarized superfluid phase (SC\(_0\)) to SC\(_M\) and tricritical points in the \((h - |U|) \) and \((t^\uparrow/t^\downarrow - |U|) \) ground state phase diagrams. We also construct the finite temperature phase diagrams for both \(t^\uparrow = t^\downarrow \) and \(t^\uparrow \neq t^\downarrow \) and analyze the possibility of occurrence of a spin polarized KT superfluid.

Subject category:
1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode:
poster

Corresponding author:
A. Kujawa-Cichy

Address for correspondence:
Solid State Theory Division, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland

Email address:
kujawa@amu.edu.pl