Magnetic properties of EuNiO\textsubscript{3} thin films

K. Bilewska1, J. Szade1, P. Ruello2, E. Wolna1 and M. Edely2

1Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
2Laboratoire de Physique de l'Etat Condensé, UMR CNRS 6087, Université du Maine, 72085 Le Mans, France

RNiO\textsubscript{3} (R-rare earth) is a family of compounds that in certain temperatures undergo antiferromagnetic-paramagnetic and metal-insulator phase transitions. Their properties are not yet fully understood. Correlated electron EuNiO\textsubscript{3} thin films of various thicknesses and deposited on different substrates by RF magnetron sputtering were studied. Magnetic measurements were performed with SQUID magnetometer. Curves of magnetization versus temperature and versus applied magnetic field were obtained. Results indicate that surprisingly EuNiO\textsubscript{3} thin films are not antiferromagnetic in the studied temperature regime. Instead, they turn out to have a ferro- or ferrimagnetic character and show hysteretic behaviour with the change of external field. This can be presumably a result of surface effects or charge disproportionation of nickel in those compounds which assumes the existence of nickel in two nonequivalent states- weakly magnetic Ni3+\delta and strongly magnetic Ni3−\delta. Surface sensitive studies and calculations are on the way to confirm obtained experimental results.

\textbf{Subject category :}
1. Strongly Correlated Electrons and High Temperature Superconductivity

\textbf{Presentation mode :}
poster

\textbf{Corresponding author :}
K. Bilewska

\textbf{Address for correspondence :}
Institute of Physics
University of Silesia
Uniwersytecka 4
40-007 Katowice

\textbf{Email address :}
k bilewska@us.edu.pl