Conductance spectroscopy of a strongly-correlated superconductor

Jan Kaczmarczyka, M. Sadzikowskia, and Jozef Spałeka, b

aMarian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
bFaculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Kraków, Poland

We study theoretically the conductance of a two-dimensional junction between a normal metal and a strongly-correlated superconductor in Zeeman field. Depending on the field strength the superconductor is either in the Bardeen-Cooper-Schrieffer (BCS), or in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state of the Fulde-Ferrell type. The strong correlations are accounted for by means of the Gutzwiller approach, what leads naturally to the emergence of spin-dependent masses (SDM) of quasiparticles when the system is spin-polarized. The case without strong correlations (with spin-independent masses) is analyzed for comparison. We study both s-wave and d-wave symmetry of the superconducting gap and concentrate on the parallel orientation of the Cooper pair momentum Q with respect to the junction interface. The junction conductance is presented for a series of barrier strengths (i.e. in the contact, intermediate, and tunneling limits). The situation with strong correlations differs essentially from that in the non-correlated case. Our analysis provides thus an experimentally accessible test for the presence of strong-correlations in superconducting state.

The work was supported by Ministry of Higher Education and Science, Grants Nos. N N202 173735 and N N202 128736.

Subject category:
1. Strongly Correlated Electrons and High Temperature Superconductivity

Presentation mode:
poster

Corresponding author:
J. Kaczmarczyk

Address for correspondence:
Zakład Teorii Materii Skondensowanej i Nanofizyki
Instytut Fizyki im. M. Smoluchowskiego
Reymonta 4
30-059, Kraków

Email address:
jan.kaczmarczyk@uj.edu.pl