Vibrational Spectra of Coordination Polymers Based on TCE-TTF
I. Olejniczaka, A. Łapinskia, R. Świetlika, J. Olivierb, S. Golhenb and L. Ouahabb

aInstitute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179 Poznań, Poland
bUMR 6226 CNRS, Université de Rennes 1, 35042 Rennes, France

Coexistence of magnetism and electrical conductivity is one of the most important directions in the synthesis of multifunctional organic-based materials. Here we present infrared and Raman spectra of the series of TCE-TTF-based isostructural polymeric salts with paramagnetic (CoII, MnII), and diamagnetic (ZnII, CdII) metal ions \cite{1}. Infrared and Raman active modes are identified and assigned based on theoretical calculations for neutral and ionized TCE-TTF using density functional theory (DFT) methods. The vibrational modes related to the C=C stretching vibrations of TCE-TTF are analyzed assuming the existence of the electron-molecular vibration coupling (EMV). The presence of the antisymmetric C=C dimeric mode provides an evidence that charge transfer takes place between TCE-TTF molecules belonging to neighboring polymeric networks.