DIPOLE-EXCHANGE SPIN-WAVE SPECTRUM OF THE DYNAMIC MAGNONIC CRYSTAL ON TERAHERTZ FREQUENCIES

N. Yu. Grigoryeva, B.A. Kalinikos
Department of Physical Electronics and Technology, St.-Petersburg Electrotechnical University, 197376 Saint-Petersburg, Russia

The planar magnetic periodic structures (magnonic crystals) based on the magnetic thin films provide favorable possibilities in reduction of the device dimensions and in the development of novel high-frequency devices. The dynamic magnonic crystals represent a type of the structures that can be formed dynamically in ferromagnetic waveguiding system, for example, by switching on and off an external periodic magnetic field. The easy-tuning dispersion characteristics and the possibility of using highly anisotropic ferromagnetic (e.g., hexaferrite) film as a waveguiding element makes such structures very attractive for applications in terahertz signal processing.

Here we present an analytical theory of the dipole-exchange spin-wave spectrum for the dynamic magnonic crystal, which is formed on the basis of the hexaferrite film with strong uniaxial magnetic volume anisotropy by applying a small spatially-periodic magnetic field simultaneously with the uniform bias magnetic field. In constructing the theory, a strong uniaxial volume anisotropy, as well as arbitrary surface spins pinning conditions are taken into account. The theoretical investigation is illustrated by several relevant numerical calculations.

Subject category:
3. Magnetic Structure and Dynamics

Presentation mode:
poster

Corresponding author:
N. Yu. Grigoryeva

Address for correspondence:
Srebristii boulevard 15-482
197227, Saint-Petersburg, Russia
mobile +7 921 950 04 68

Email address:
natalygri69@gmail.com