MAGNETOSTATIC WAVES IN FERRITE MAGNONIC CRYSTAL-DIELECTRIC-METAL STRUCTURE

S.L. Vysotskya, Yu.A. Filimonova, E.S. Pavlovb and S.A. Nikitovb

a Kotel’nikov SBIRE RAS, Zelenaya str., 38, Saratov, 410019, Russia
b Kotel’nikov IRE RAS, Mokhovaya 11-7, Moscow, 125009, Russia

Ferrite magnonic crystal (MC) represents ferrite film with surface 1D or 2D periodic structure. While propagating in MC magnetostatic waves (MSW) interaction of incident q_{in} and reflected q_{ref} waves results in formation of forbidden gaps in MSW spectra at wavenumbers q_n satisfied Bragg condition $q = \pi n/d$, where $n=1,2,...$, d is structure’s period. Corresponding frequency bands of increased propagating losses were experimentally found at frequency regions f_n linked with q_n by corresponding dispersion characteristics $f = f(q)$ for surface (SMSW), backward volume (BWMSW) and forward volume (FMSW) MSW.

In ferrite-dielectric-metal (F-D-M) structure the slope of dispersion curve of MSW depends on thickness of dielectric t. Note that BWMSW and FMSW are reciprocal waves in contrast to SMSW. So in MC-dielectric-metal structure decreasing of t for BWMSW and FMSW will change values of f_n corresponding to q_n satisfied Bragg condition.

In turn in case of SMSW $t = t^*$ for incident wave corresponds to $t = t^* + h$ (h is film’s thickness) for reflected wave as they propagate along different surfaces of ferrite film. So at small enough t at the fixed frequency $q_{in}(t) \neq q_{ref}(t + h)$ that means that Bragg condition wouldn’t be fulfilled and bands of increased propagating losses would disappear. This suggestion was experimentally justified for $t = 0$.

\textbf{Subject category :}
3. Magnetic Structure and Dynamics

\textbf{Presentation mode :}
poster

\textbf{Corresponding author :}
S.L. Vysotsky

\textbf{Address for correspondence :}
Zelenaya str., 38, Saratov, 410019, Russia

\textbf{Email address :}
vysotsl@gmail.com