Exchange coupled NiFe/NiMn bilayer studied by vector network analyzer ferromagnetic resonance

H. Głowinskia, K. Załęskia, J. Spradaa,b and J. Dubowika
aInstitute of Molecular Physics Polish Academy of Sciences, ul. Mariana Smoluchowskiego 17, 60-179 Poznań, Poland
bDepartment of Physics, A. Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland

Vector network analyzer ferromagnetic (VNA-FMR) resonance allows the ferromagnetic resonance to be measured by sweeping the frequency without changing the external field. Therefore the exchange bias field H_{eb} in ferromagnet/antiferromagnet (F/AF) bilayers can be determined using Kittel’s formula at different constant values of external field. We can determine back and forth coercivities from a hysteresis loop and usually the H_{eb} field is evaluated as the average value of these back and forth coercive fields. VNA-FMR measurements reveal that exchange field changes during the magnetization reversal of ferromagnetic layer, so evaluating the H_{eb} field from coercive fields, results in imprecise value. Using VNA-FMR and a procedure described in [1], we have determined the exchange bias fields H_{eb} of NiFe/NiMn bilayer at different constant values of external field. The NiFe/NiMn bilayer sample with exchange bias was prepared using magnetron sputtering with a post-deposition vacuum annealing at 1000 Oe.

\textbf{Subject category}:
3. Magnetic Structure and Dynamics

\textbf{Presentation mode}:
poster

\textbf{Corresponding author}:
H. Głowinski

\textbf{Address for correspondence}:
Institute of Molecular Physics Polish Academy of Sciences
ul. Mariana Smoluchowskiego 17
60-179 Poznań, Poland

\textbf{Email address}:
hubert.glowinski@ifimpan.poznan.pl