Ferromagnetic Shape Memory Alloys (FSMA) are characterized by martensitic transformation in a ferromagnetic state. The Ni-Mn-X (X = In, Sn, Sb) systems with an excess of Mn atoms are off-stoichiometric Heusler alloys which exhibit shape memory effect. The present study is focused on Ni\textsubscript{50}Mn\textsubscript{50-x}Sn\textsubscript{x} systems with L\textsubscript{2}\textsubscript{1} structure in the high temperature austenite phase and with a lower symmetry martensite phase (orthorhombic or tetragonal) at low temperatures. We present results of band structure calculations based on Full-Potential SPR-KKR-CPA [1-3]. The total energy of L\textsubscript{2}\textsubscript{1} structure as a function of volume and c/a ratio is presented. The c/a ratio calculations were done for constant, optimal unit cell volume. The total magnetic moment and its contributions as a function of c/a are also presented. For the sake of comparison the total energy as a function of c/a ratio calculated with Atomic Sphere Approximation (ASA) is presented.