Electronic band structure and magnetic properties of La$_{2/3}$Pb$_{1/3}$MnO$_3$

W. Tokarza, M. Kowalika,b, R. Zaleckia, A. Kołodziejczyka

aDepartment of Solid State Physics, Faculty of Physics and Applied Computer Science, AGH Univ. of Science and Technology, 30, Mickiewicza Str, 30-059 Cracow, Poland

bDepartment of Physics, Rzeszów University of Technology, 6, Powstańców Warszawy Str, 35-959 Rzeszów, Poland

We present a theoretical study of electric and magnetic properties in perovskite La$_{2/3}$Pb$_{1/3}$MnO$_3$. The calculation was carried out based on first-principles density functional theory (DFT) with general gradient approximation GGA+U using Wien2K package. The P3c1 crystal structure was taken from the detailed X-ray diffraction data for the perovskite [1]. For Mn d electrons exact exchange energy was utilized. Density of state (DOS) was determined by modified tetrahedron method. As a result we get a valance band shift for the spin up and down density of states with the top of the latter at 1.85 eV below the Fermi energy level (E_F). We noticed that conduction band is mainly dominated by d spin up manganese electrons, Mn d_{zx} and d_{yz} states have two times larger contribution than $d_{x^2-y^2}$ and d_{z^2} states. We attribute this to Mn-06 octahedral tilting. From the same reason d_{z^2} state has no contribution to the DOS at E_F. Comparison of total DOS with ultraviolet photoemission spectroscopy (UPS) measurements shows similar features [2] especially as far as the lead spectral intensity from the 6s electrons at about -9.5 eV is concerned. The calculated total magnetic moment per formula unit is 3.66 μ_B. There is some discrepancy between this value and the measured magnetic moment 3.48 μ_B/fu [3].

[3] Przewoźnik, J., Kowalik, M., Kołodziejczyk, A., Gritzner, G., Kapusta, C., 2010. Magnetic and magnetotransport properties of the (La$_{0.67}$Pb$_{0.33}$)(Mn$_{1-x}$Fe$_x$)O$_3$ (0 $\leq x \leq 0.1$) compounds. J. All. Comp. 497, 1723

Subject category:
3. Magnetic Structure and Dynamics

Presentation mode:
poster

Corresponding author:
W. Tokarz

Address for correspondence:
W. Tokarz
Department of Solid State Physics
Faculty of Physics and Applied Computer Science
AGH University of Science and Technology
30, Mickiewicza Str
30-059 Cracow, Poland

Email address:
tokarz@agh.edu.pl