EXCHANGE BIAS IN Ni-Mn-Sn HEUSLER ALLOY FILMS

I. Gościanskaa, K. Załęskib, H. Głowinskib, and J. Dubowikb

aPhysics Department, A. Mickiewicz University, Poznan, Poland
bInstitute of Molecular Physics, Polish Academy of Sciences, Poznań, Poland

Exchange bias (EB) has been recently observed in NiMn-based Heusler bulk alloys. It has been shown that it results from coexisting ferromagnetic (FM) and antiferromagnetic (AFM) phases. We report a relatively large EB effect observed for the first time in Ni-Mn-Sn thin films with different microstructure and composition. The thin film structures prepared by magnetron sputtering comprise: a MgO/Ni\textsubscript{50}Mn\textsubscript{36}Sn\textsubscript{14} (200 nm) off-stoichiometric epitaxial film with clearly visible martensitic transformation at $T \approx 125$ K (sample A), a Si/Ni\textsubscript{50}Mn\textsubscript{43}Sn\textsubscript{7} (100 nm) film phase decomposed into (AFM) Ni\textsubscript{50}Mn\textsubscript{50} and (FM) Ni\textsubscript{50}Mn\textsubscript{25}Sn\textsubscript{25} (sample B), and a Si/NiMn(50 nm)/Ni\textsubscript{50}Mn\textsubscript{25}Sn\textsubscript{25} (30 nm) bilayer with AFM/FM interface but without any EB near room temperature (sample C). Despite the samples differ markedly in both microstructure and composition the substantial EB is present at low temperature region $4 < T < 80$ K. The highest EB effect is observed in phase decomposed sample B with overdeveloped AFM/FM interfaces. EB decreases with increasing T approximately as $H_{EB}(T) \propto H_{EB}(4K)/T$. $H_{EB}(4$ K) amounts to 190 Oe, 65 Oe and 60 Oe for sample B, A and C, respectively. Blocking temperature where the EB vanishes is 40, 50 and 80 K for sample A, C and B, respectively. The results suggest that the role of AFM/FM interfaces is small (but not negligible) in formation of EB in Ni-Mn-Sn Heusler alloy films and EB is rather related to AFM/FM interactions in nanoscale.

Subject category : 3. Magnetic Structure and Dynamics

Presentation mode : poster

Corresponding author : J. Dubowik

Address for correspondence : Institute of Molecular Physics, Polish Academy of Sciences, Poznan, Poland

Email address : dubowik@imf.poznan.pl