Magnetoresistive Properties of La–Pb–Mn Perovskites

I. Balasz–Muresan* and E. Burzo*

*Faculty of Physics, Babes–Bolyai University, Cluj–Napoca, Romania

The La$_{1-x}$Pb$_x$MnO$_3$ perovskites, with $0.24 \leq x \leq 0.40$, crystallize in a rhombohedral–type structure having $R3c$ space group. The resistivities increase from 5 K, up to temperatures T_m, situated in the range 184 K ($x=0.2$) and 240 K ($x=0.4$). At these temperatures there is a transition from metallic to semiconducting type behaviour. The T_m values are by ≈ 100 K smaller than the Curie points, T_c. The activation energies at $T > T_m + 50$ K can be described by an adiabatic hopping conduction mechanism. The activation energies increase from 0.112 eV ($x=0.24$) to 0.123 eV ($x=0.4$). Possible mechanisms for the metal to semiconducting transition, at lower temperatures than T_c, are analysed.

The field and temperature dependences of the magnetoresistivities, MR, were studied. At 5 K and in field of 7 T, the MR values are situated between 46 % and 49 % and decrease up to 25–30 % at room temperature. The intergrain tunneling magnetoresistance as well as the intragrain contribution, respectively were analysed as function of temperature and external field. The polarizations at 5 K are situated between 0.73 and 0.85 and decrease up to ≈ 0.2 at room temperature. The involved mechanisms in describing magnetoresistive behaviour are discussed.

Subject category: 4. Spin Electronics and Magneto-Transport

Presentation mode: poster

Corresponding author: I. Balasz–Muresan

Address for correspondence:
Faculty of Physics
Babes-Bolyai University,
Department of Physics of Advanced Materials and Technology
Str. Mihail Kogalniceanu, Nr. 1
RO- 400084,
Cluj-Napoca,
Romania

Email address: ibalasz@gmail.com