METAMAGNETISM OF THE Fe$_2$MnGa HEUSLER ALLOY
Y. V. Kudryavtseva, J. Dubowikb, N. V. Uvarova and V. N. Iermolenkoa

aInstitute of Metal Physics, National Academy of Sciences of Ukraine, 252680, Kiev-142, Ukraine

bInstitute of Molecular Physics, Polish Academy of Sciences, 60-179 Poznań, Poland

Magnetic properties and electronic structure of bulk and film Fe$_2$MnGa Heusler alloy (HA) samples have been investigated. It was verified that unlike most of full stoichiometric Heusler compounds, ferromagnetic bulk stoichiometric Fe$_2$MnGa with the Curie temperature of 780 K crystallizes in the ordered FCC lattice of Cu$_3$Au type with small amount of B2-phase. According to the results of our first-principle calculations free electron energy of ferromagnetic (FM) [$\mu_{\text{total}} = 6.78\mu_B$, $\mu_{\text{Fe}} = 2.19\mu_B$, $\mu_{\text{Mn}} = 2.55\mu_B$ and $\mu_{\text{Ga}} = -0.10\mu_B$] FCC phase is lower by about 0.06 eV than that of antiferromagnetic (AFM) phase with L2$_1$ structure. In a temperature range of 80 - 110 K a FM to AFM transition was observed with field cooling magnetization measurements. Additionally, Fe$_2$MnGa revealed metamagnetic behavior since increase in magnetic field suppresses the AFM spin arrangement. Depending on deposition conditions Fe$_2$MnGa films revealed a mixed structure: mainly BCC or FCC phases with some admixture of FCC or BCC phases, respectively. Fe$_2$MnGa HA films with mainly BCC structure show the same behavior as the bulk samples: the magnetization increases with decrease in temperature from the Curie temperature ($T_C \approx 300$ K) up to 110 K and then abruptly decreases up to zero due to transformation to AFM phase. According to DSC analysis FM/AFM transition of Fe$_2$MnGa films is not accompanied with any structural changes.