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RELAXATION  TIMES  OF  ELECTRONS
IN  QUASI-TWO-DIMENSIONAL  DISORDERED  SYSTEMS
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Abstract: The Faber-Ziman diffraction model was reformulated so that to describe the behavior of the
quasi-two-dimensional  electron  gas  in  a  two-dimensional  system  of  disordered  potentials.  Elastic
scattering  of  charge  carriers  in  the  plane  determined  by  the  potentials  was  assumed.  Some  model
calculations of the transport relaxation time were performed. The inverse transport relaxation times for
subbands  with  a  minimum  and  maximum  in-plane  Fermi  vector  components  were  calculated  as
a function of Cs layer width. The oscillations for the latter subband with a period equal to the atomic
diameter were obtained for very thin layers. 

1. INTRODUCTION

The  transport  properties  of  two-dimensional  electron  systems  have  recently  attracted
considerable attention because they open new perspectives for applications in nanoelectronics
based on quantum transport processes of spin and charge. One of the most important problems
in this matter is conductivity (or resistivity) which should apparently depend on the size of
the system. Moreover,  we can observe the quantization of  conductivity due to  geometrical
confinement  or  external  magnetic  field  applied  perpendicularly to  the  plane  of  motion  of
electrons [1]. Such phenomena should exist in a very thin metallic stripe where the electron gas
can  be  treated  as  quasi  two-dimensional  and  its  properties  should  differ  from  those  of
three-dimensional one.

The purpose of this  paper  is  to consider a  quasi  two-dimensional  electron gas moving
through a  system of  randomly located  potentials  which has  a  thickness  of  several  atomic
monolayers. The wave function of an electron is formally three-dimensional but its z-depend-
ence is completely different from the  xy one because of constraints given by surfaces. This
should give rise to a dependence of the scattering process and – furthermore – the kinetic
coefficient on the thickness of the film, at least for the samples of a nanometer size.  

2. THEORETICAL MODEL

We consider the motion of non-interacting electrons in presence of random potential in the
two-dimensional  system which extends unlimitedly in xy plane but has a finite thickness Lz in
z-direction. The wave function of such electrons is a solution of the Schrödinger equation
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where the potential U(r) is given by the superposition of atomic potentials. 
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We assume that the potential U(r) can be separated into two parts, namely in-plane U1(x, y)
and perpendicular-to-plane U2(z).
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where U1(x, y) is a random set of potentials, and U2(z) corresponds to geometrical confinement
and can be represented by a quantum well.

This choice of potential allows us to relate it with the width of layer in z-direction. Thus the
wave function can be factorized as follows
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Substituting Eq. (2) and Eq. (3) into Eq. (1) we can separate the latter into two [2]
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where ρ = (x, y) is a vector in xy plane, kρ and kz are the wave vectors of electron in xy plane
and z-direction, respectively, correlated as below
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and
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Let us assume that the potential well in the  z-direction is of infinite depth. It  is a realistic
assumption if the sample lies on an insulating substrate and is placed in vacuum or an inert gas
atmosphere. Then the solution of Eq. (4) is very simple

( ) sinz zz C k zζ = , (8)

where 
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and m = 1, 2, ...
In  this  picture  only  the  component  kρ undergoes  the  scattering.  If  we assume  elastic

scattering, its absolute value is given by Eq. (6). Now we can solve the scattering problem in
two dimensions.

A formal solution of Eq. (5) has the form
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where the Green function G(ρ, ρ΄) is given by the formula

( )
( )2

2 2 2

exp1
( , )

2

i '
G ' d q

q kρπ

⋅ −  = −
−∫

qρ ρ
ρ ρ , (11)

and φ0(ρ) is a solution of Eq. (5) without a source

0 ρ exp i ρφ  = − ⋅ ( ) kρ (12)

normalized such that one incident particle falls into a unit area in  xy plane. We can solve
the integral equation (10) in the first Born approximation [3]  putting  φ0(ρ) instead of  φ(ρ)
under the integral sign then

'3 4 2
1

1 ' ' ,
8

ik
i kik iee e d U e

k

ρ
ρ ρρ

ρ
ρρ π

ρ

φ ρ ρ
π ρ

− ⋅
 ⋅ −− ⋅ −  ≈ + ∫ ρ k (ρ/ )/( ) (ρ ) (13)

The differential cross-section dσ/dϕ determines only the probability of scattering into the
planar angle [φ, φ + dφ]
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where q = k  k(ρ/ρ) is the scattering vector in xy plane.
For a disordered system the potential  U1(ρ) is a superposition of atomic potentials  ua(ρ)

located at random positions Ri
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After some manipulations, analogous to those in Ziman’s work [4] we obtain
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where N is the total number of atoms in the system, S(q) is a two-dimensional structure factor,
ua(q) is a Fourier transform of ua(ρ), and
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The inverse transport relaxation time 1−
trτ can be expressed by this cross section [5]
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where υF is the two-dimensional Fermi velocity, A is the area of the sample, and the factor of 2
comes from the fact that electron may scatter “to the left” or “to the right” from its primary
direction.

This is the general formula of our model. The very interesting fact is that relaxation times
form discrete set of values, dependent on the quantum number m. It can be easily seen from the
equations (6) and (9) because k is actually equal to kF (three-dimensional Fermi vector) and is
constant for a specific material. However, to obtain a quantitative results we have to make
some further assumptions.

3. SCATTERING BY 2D SCREENED POTENTIAL
Assume the Coulomb screened potential in an usual form
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where λ 1 is a screening length.
Its Fourier transform in two dimensions can be easily calculated
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The two-dimensional structure factor was calculated by Khan and Toan [6] up to q = 6qF.
For our purposes we need S(q) only in the range from 0 to 2qF and it can be approximated by
a parabola α(q/qF)2 in this range. Then 1−

trτ is given by

2 222 2 2
1 0

2 2 2 2
0

4 1
2 22

1
2

k
eF

tr
m un dq q q

k k k kq q
k

ρ

ρ ρ ρ ρ

ρ

πυτ α
π π λ

−     =         +       
−    

∫h , (17)

where n is the areal density of electrons, or if we come back to the angular variable φ
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where we used the relation [7]

( ) 2/12 nk πρ =

valid for 2D electron gas. 
The dependence of 1−

trτ on the quantum number m is hidden in kρ because of equations (6)
and (9). After simple calculations we obtain
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where we made use of the relation [7]
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a0 being the Bohr radius.
Equation (19) provides us with a condition for the allowed values of m
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(20)

The inequality (20) also defines a maximum value of m. It comes from equation (19) but is
not related to the screening parameter  λ. It only expresses the fact that the denominator on
the right-hand side of the equation (19) should not be negative. Thus for a specific material
(definite  kF)  and  a  definite  sample  thickness  Lz only a  finite  set  of  m is  possible,  hence
the relaxation times are quantized.

4. NUMERICAL RESULTS

We have done numerical calculations for a very thin disordered film of cesium of variable
thickness Lz < 100 × 1010 m. The Fermi vector for Cs was taken as kF 0.65 × 1010 m1. It gives
maximum value of m: mmax = 20. The coefficient α in 2D structure factor we took equal to 0.28
after [6].

Fig.  1.  The  inverse  transport  relaxation  time
1−

trτ  as a function of the width of layer  Lz for
minimum quantum number  mmin and maximum
quantum numbers mmax

We performed calculations only for  minimum value of  m (always equal  to  unity)  and
the maximum one (mmax) for each value of  Lz which corresponded to multiple of the atomic
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diameter  of  Cs (5.96  × 10 10 m).  The  results  are  given in Fig.  1.  The  relaxation times for
minimal  m are  of  the  order  of  1015 which  is  a  reasonable  value  for  disordered  metals.
The relaxation times for  mmax show interesting oscillations.  They come from the inequality
(20): mmax can be the same for two neighboring but different Lz’s in case of very thin films and
the respective integrals apparently differ from each other in this situation.

5. CONCLUSIONS

We  obtained  a  general  formula  for  the  inverse  transport  relaxation  time  of  electrons
moving in a sysem of random potentials which has a finite width in one direction. A plausible
realization of such system is a very thin film of disordered metal. Electrons which form the
conduction  band in  such sample  can  be  divided  into  a  finite  number  of  subbands.  These
subbands can be numbered by means of a quantum number m which describes electron states
in a potential well of a width Lz. Each subband has its own transport relaxation time. Estimat-
ing the experimental conductivity of such sample needs taking into account all these subbands
with appropriate weights. This is intended to be done in the next paper.
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