Scientific divisions

Equipment

  • Sample preparation
    • Magnetron sputtering
    • Ion-beam sputtering
    • Pulsed laser deposition
    • Electron-beam lithography
  • Structural and chemical characterization
    • SEM – Scanning Electron Microscopy
    • XRR – X-ray Reflectometry
    • XRD – X-ray Diffraction
    • LEED, RHED (Low Energy Electron Diffraction, High Energy Electron Diffraction)
    • XRF – X-ray Fluorescence
    • XPS and AES spectroscopy
    • Profilometer (measurements of thin films thickness)
  • Static magnetic measurements
    • VSM – Vibrating Sample Magnetometer
    • GMR – Giant Magneto Resistance
    • P-MOKE Magnetometer
    • P-MOKE Microscopy
  • Dynamic magnetic measurements
    • VNA-FMR – Vector Network Analyzer – Ferromagnetic Resonance
    • FMR – Ferromagnetic Resonance
    • PIMM – Pulsed Inductive Microwave Magnetometer
  • High vacuum and electrochemical equipment for hydrogen absorption/desorption with optical or electrical monitoring
  • Infrastructure - presentation

AparaturaAparatura

 

The UHV laboratory is equipped with a set of chambers with a mean base pressure of 5x10-9 mbar (PREVAC). The system enables to prepare ultrathin layers and nanostructures by PVD (EBV evaporation and thermal evaporation), and further surface analysis: structural – LEED, RHEED; electronic with the use of home-made SPM; compositional- X-ray photocpectroscopy (XPS- VG Scienta).

UHV laboratory

Grants

  • Ferromagnetyczne warstwy z lateralną modyfikacją oddziaływania Dzyaloshinskii-Moriya dla zastosowań w urządzeniach spintronicznych i magnonicznych

    OPUS 17 nr 2019/33/B/ST5/02013, finansowane przez NCN (PB 3.30)
    Kierownik: dr hab. inż. Piotr Kuświk
    Czas trwania: 25.02.2020 r. - 24.02.2023 r.

  • Wykorzystanie domen typu skyrmion do sterowania ruchem superparamagnetycznych cząstek tworzących wodną zawiesinę

    NAWA na wymianę bilateralną naukowców pomiędzy Rzeczpospolitą Polską a Republiką Federalną Niemiec nr PPN/BDE/2019/1/00014/U/00001
    Kierownik: dr hab. inż. Piotr Kuświk
    Czas trwania: 01.01.2020 r. - 31.12.2021 r.

  • Sztuczne i stopowe warstwy ferrimagnetyczne do zastosowań spintronicznych

    PRELUDIUM 16 nr 2018/31/N/ST5/01810, finansowane przez NCN (PB 3.28)
    Kierownik: mgr inż. Łukasz Frąckowiak
    Czas trwania: 01.08.2019 r. - 31.07.2022 r.

  • Wytwarzanie i charakteryzacja cienkich warstw granatu itrowo-żelazowego na elektrodach przewodzących

    PRELUDIUM 16 nr 2018/31/N/ST5/03433, finansowane przez NCN (PB 3.27)
    Kierownik: mgr Adam Krysztofik
    Czas trwania: 01.08.2019 r. - Termin zakończenia:  31.07.2022 r.

  • Tłumienie i wzmacnianie fal spinowych poprzez prąd spolaryzowany spinowo w strukturach magnetoelektrycznych

    SONATINA 2 nr 2018/28/C/ST3/00052, finansowane przez NCN (PB 3.26)
    Kierownik: dr Piotr Graczyk
    Czas trwania: 05.11.2018 r. - 04.11.2021 r.
  • Wpływ efektu sąsiedztwa i absorpcji wodoru na międzywarstwowe sprzężenie wymienne w strukturach warstwowych V/Fe i Nb/Fe

    DIAMENTOWY GRANT nr DI2016 011946, finansowane przez MNiSW (PB 3.25)
    Kierownik: Mateusz Wachowiak
    Czas trwania: 07.09.2017 r. - 06.09.2021 r.
  • Wpływ oddziaływania typu „Exchange bias” na anizotropię prostopadłą warstwy ferromagnetyka w układach ferromagnetyk/antyferromagnetyk (ferrimagnetyk)

    SONATA BIS 5 nr 2015/18/E/ST3/00557, finansowane przez NCN (PB 3.23)
    Kierownik: dr inż. Piotr Kuświk
    Czas trwania: 27.04.2016 r. - 26.04.2020 r.

Zakończone granty

  • Badania segregacji powierzchniowej i pasma walencyjnego XPS cienkowarstwowych stopów nanokrystalicznych odwracalnie absorbujących wodór

    DIAMENTOWY GRANT nr DI2014 010344, finansowane przez MNiSW (PB 3.22)
    Kierownik: mgr inż. Sebastian Pacanowski
    Czas trwania:   01.09.2015 r. - 31.08.2019 r.
  • MagIC - Magnonics, Interactions and Complexity: a multifunctional aspects of spin wave dynamics

    projekt nr 64434 Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE), finansowy ze środków UE HORIZON 2020 H2020-MSCA-RISE-2014
    Kierownik: prof. dr hab. Janusz Dubowik
    Czas trwania: 01.02.2015 r. - 01.02.2019 r.

  • Ferromagnetyczne materiały dla kontrolowanego pozycjonowania ścian domenowych.

    2013/08/M/ST3/00960 HARMONIA-4
    DEC-2013/08/M/ST3/00960
    Kierownik: dr hab. Maciej Urbaniak
    Czas trwania: 28.08.2013-27.08.2016

Cooperation

  • Technische Universität Dresden, Germany
  • University of Twente, The Netherlands
  • Max Planck Institute for Solid State Research, Stuttgart, Germany
  • CNRS-Thales, Orsay, France
  • Insitut for Theoretical Physics, RWTH, Aachen, Germany
  • Universität Regensburg, Regensburg, Germany

Nanogallery

Our "nanogallery" based on recent publications

 


Anomalous, spin, and valley Hall effects in graphene deposited on ferromagnetic substrates   
A. Dyrdał and J. Barnaś, 2D Mater. 4 (2017) 034003
DOI: 10.1088/2053-1583/aa7bac

Spectral properties and the Kondo effect of cobalt adatoms on silicene
I. Weymann, M. Zwierzycki, and S, Krompiewski, Phys. Rev. B 96 (2017)115452.
DOI: 10.1103/PhysRevB.96.115452


Edge magnetism of finite graphene-like nanoribbons in the presence of intrinsic spin-orbit interaction and perpendicular electric field.
S. Krompiewski, Nanotechnology 27, (2016) 315201
DOI: 10.1088/0957-4484/27/31/315201


Spin-orbital and spin Kondo effects in parallel coupled quantum dots
D. Krychowski and S. Lipiński, Phys. Rev. B 93 (2016) 075416
DOI: 10.1103/PhysRevB.93.075416


Transport through graphenelike flakes with intrinsic spin-orbit interactions
I. Weymann, J. Barnaś, and S, Krompiewski, Phys. Rev. B 92 (2015) 045427
DOI: 10.1103/PhysRevB.92.045427


I. Weymann, S. Krompiewski, and J. Barnaś, J. Nanosci. Nanotechnol. 12 (2012) 7525.
DOI: 10.1166/jnn.2012.6532

Effect of the attachment of ferromagnetic contacts on the conductivity and giant magnetoresistance of graphene nanoribbons,
S. Krompiewski, Nanotechnology 23 (2012) 135203,
http://iopscience.iop.org/0957-4484/23/13/135203/

Electronic transport through side-contacted graphene nanoribbons: effects of overlap, aspect ratio and orientation,
S. Krompiewski, Nanotechnology 22 (2011) 445201,
http://iopscience.iop.org/0957-4484/22/44/445201

Spin Dependent Transport through a Carbon Nanotube Quantum Dot in the Kondo Regime,
S. Lipiński, D. Krychowski, in Electronic properties of carbon nanotubes (ed. J. M. Marulanda, Intech 2011),
http://www.intechopen.com/books/electronic-properties-of-carbon-nanotubes

Spin polarized current and shot noise in carbon nanotube quantum dot in the Kondo regime,
S. Lipiński, D. Krychowski, Phys. Rev. B 81 (2010) 115327,
http://prb.aps.org/abstract/PRB/v81/i11/e115327

Theoretical studies of spin-dependent electronic transport in ferromagnetically contacted graphene flakes,
S. Krompiewski, Phys. Rev. B 80 (2009) 075433,
http://prb.aps.org/abstract/PRB/v80/i7/e075433

Transport through single-wall metallic carbon nanotubes in the cotunneling regime,
I. Weymann, J. Barnaś, S. Krompiewski, Phys. Rev. B 78 (2008) 035422,
http://prb.aps.org/abstract/PRB/v80/i7/e075433

Theoretical prediction of perfect spin filtering at interfaces between close-packed surfaces of Ni or Co and graphite or graphene,
V.M. Karpan, P.A. Khomyakov, A.A. Starikov, G. Giovannetti, M. Zwierzycki, M. Talanana, G. Brocks, J. van den Brink, and P.J. Kell
Phys. Rev. B 78 (2008) 195419,
http://prb.aps.org/abstract/PRB/v78/i19/e195419

Research

Research objectives

We are researching the physics of nanostructures aiming both at modeling and understanding of their properties. The research concerns fundamental problems important also in the context of practical application in nanotechnology (including spintronics and spin-calorytronics). We focus  in particular on the spin transport, electron correlations (Hubbard-type, Coulomb blockade, Kondo effect), structural imperfections (boundary effects, interfaces, defects, admixtures, ripples, etc.). The development of the theory describing the processes involving both charge and spin degrees of freedom as well as heat transfer in the nanoscale is essential for the creation of future generations of innovative electronic  devices. These should realize the double goal of improved performance and energy efficiency, important for environment protection and thereby economic growth.

Research profile

Theoretical studies of electronic, magnetic and magneto-thermoelectric phenomena in nanoscopic systems. In particular, intensive investigations on carbon nanostructures (nanotubes and graphene), graphene-like systems and quantum dots. A wide range of computational methods is used, starting from analytical methods and preliminary analysis by means of simple programs (Mathematica and so on) through the tight-binging method up to advanced first principle methods. In transport studies, the Green’s function technique is used in combination with the Landauer-Büttiker and Keldysh formalisms.

Research projects

  • Project 6 PR UE - Carbon nanotube devices at the quantum limit CARDEQ (2006-2009), head - Prof. S. Krompiewski
  • Projckt MNiSW - Carbon nanotube devices at the quantum limit SPUB (2006-2009), head - Prof. S. Krompiewski
  • Supervisor’s Project MNiSW – Analysis of the influence of strong correlations on electronic transport in nanostructures(2009-2010), supervisor – Dr. habilit. Lipiński, Prof. IFM PAN  (Ph.D student. – BSc.  eng. D. Krychowski)
  • Project MNiSW – The effect of topology, interfaces and electron correlations on the charge and spin transport in graphene (2010-2013), head - Prof. S. Krompiewski
  • Project NCN - Graphene-based (and similar) nanostructures for spintronics and spin caloritronics. Theoretical studies (2014-2017), head - Prof. S. Krompiewski

Scientific achievements  

  • Studies on the spin Hall effect in one- and two-layer graphene. Demonstrating that in the presence of perpendicular electric field, there is a phase transition from the topological insulator phase to the ordinary insulator phase.
  • Performing model shot noise computations for a double magnetic tunnel junction. Theoretical predictions have been verified by comparison with experimental results for Fe/MgO/Fe/MgO/Fe.
  • Studies on the effect of the transverse magnetic anisotropy on the spin switching of a single atom or a single magnetic molecule by current. It has been shown that the quantum tunneling of magnetization occurs in certain resonance fields when at least one electrode is ferromagnetic.
  • Analyzing a graphene bilayer it was shown that beyond the van Hove singularity region the impurity spin polarization  for SU(2) symmetry  is opposite to the bilayer polarization, whereas it is the same for SU(4). Close to the singularity, a reversal of the impurity magnetic moment is possible.
  • Examining the effect of electrode/graphene-structure interfaces, and the effect of electron edge states (including possible appearance of magnetic moments) on the electronic transport.
  • Development of an effective recursive method (knitting) to study a multi-electrode electronic transport. A strong spin-valve type effect has been found in the case of four electrodes located in the centers of the square flake.
  • Based on ab initio band structure computations combined with a few complementary techniques for analyzing many-body effects, the Kondo effect for cobalt adatoms placed on a graphene zigzag ribbon has been examined. In particular, the competition of spin and orbit degrees of freedom, and the impact of relevant details of both the electronic and magnetic structures of the ribbons have been thoroughly discussed. Similar computations have also been performed for a quasi two-dimensional (buckled) silicene layer with a cobalt adatom.
  • It has been shown that magnetic moments at zigzag edges of graphene ribbons may be considerably weakened or completely suppressed after application of external current electrodes. The effect strongly depends on electronic nature of the graphene/electrode interface and on the distance between the electrodes.
  • The following structural imperfections have been also taken into account: the aforementioned edge effects, inter-grain boundaries in polycrystalline carbon nanostructures, and the so called antidots (empty regions).

In 2009-2017, 5 research projects were carried out (including 1 European and 1 bilateral “Harmonia” projects). The projects were devoted to studies of physical phenomena in carbon nanotubes, graphene and in graphenelike nanostructures of potential importance for innovative applications in nanoelectronics and spintronics.

Subcategories